

Fig.4. Remplissage de la maille.

Références

- BOND, W. L. (1959). In International Tables for X-ray Crystallography, Vol. II, p. 291. Birmingham: Kynoch Press. CAVALCA, L., NARDELLI, M. & FAVA G. (1960). Acta Cryst.
- 13, 594.
- CRUICKSHANK, D. W. J. (1949). Acta Cryst. 2, 65.
- CRUICKSHANK, D. W. J. (1961). In Computing Methods and the Phase Problem in X-Ray Crystal Analysis, p. 32.
- CRUICKSHANK, D. W. J. & ROLLETT, J. S. (1953). Acta Cryst. 6, 705.

GRANDJEAN, D., WENDLING, J. P., WEISS, R. & STROSSER, R. (1964). Bull. Soc. franç. Minér. Crist. 87, 87.

- LADELL, J. & POST, B. (1954). Acta Cryst. 7, 559.
- NARDELLI, M. & CAVALCA, L. (1957). Ric. Sci., 27, 2144.
- NARDELLI, M., CAVALCA, L. & FAVA, G. (1957). Gazz. chim. Ital. 87, 1232.
- SCHOMAKER, V., WASER, J., MARSH, R. E. & BERGMAN, G. (1959). Acta Cryst. 12, 600.
- SUZUKI, I. (1960). J. Chem. Soc. Japan, 33, 1359.
- WEISS, R., MITSCHLER, A. & FISCHER, J. (1966). Bull. Soc. chim. France, 3, 1001.

Acta Cryst. (1967). 22, 240

Crystal Structures of Nitrates of Divalent Hexaquocations I. Hexaquozinc Nitrate

BY A. FERRARI, A. BRAIBANTI, A. M. MANOTTI LANFREDI & A. TIRIPICCHIO. Istituto di Chimica generale della Università di Parma, Italy

(Received 11 July 1966)

The crystal structure of hexaquozinc nitrate has been solved by three-dimensional methods and refined by differential syntheses. The crystals are orthorhombic, space group *Pnma*, with a = 12.34, b = 12.85, c = 6.29 Å. The structure is composed of cations $[Zn(OH_2)_6]^{2+}$ and anions NO_3^- . The hexaquocation has practically octahedral symmetry, with $Zn-OH_2 = 2.097 \pm 0.010$ Å, which is very close to the values quoted in the literature. The nitrato anion has trigonal symmetry, with $N-O_{av} = 1.242 \pm 0.009$ Å, and is planar. The hexaquocations and the nitrato anions are held together by a network of hydrogen bonds, each H₂O forming two hydrogen bonds with oxygen atoms of nitrato groups. Hydrogen bond lengths are in the range 2.778 – 2.995 Å.

Introduction

The hexaquocations of divalent metals are the most common complexes considered in coordination-compound chemistry. One could expect ions of similar size and properties such as Zn^{2+} , Mg^{2+} , Ni^{2+} to form isomorphous series of compounds. The crystal structure, however, of hexaquozinc nitrate, orthorhombic (Ferrari & Braibanti, 1958), of hexaquomagnesium nitrate, monoclinic (Ferrari & Braibanti, 1958; Mozzi & Bekebrede, 1961) and of hexaquonickel nitrate, triclinic (Jayaraman, 1957; Weigel, Imelik & Laffitte, 1962) are different from one another. It seems therefore worth while to analyse the structures of these complexes in detail and the packing conditions in the crystal lattice.

The results of the structure determination of hexaquozinc nitrate are reported here.

Experimental

Crystals of hexaquozinc nitrate, $Zn(OH_2)_6(NO_3)_2$, were obtained by evaporation from an aqueous solution. As they are highly hygroscopic, crystals for X-ray analysis were sealed into Lindemann-glass capillary tubes.

Crystal data

- Compound: hexaquozinc nitrate, Zn(OH₂)₆(NO₃)₂; F.W. 297.49.
- Crystal habit: elongated prisms.

Crystal class: orthorhombic, dipyramidal.

- Unit cell: (Cu $K\alpha$ radiation: $\lambda = 1.5418$ Å; rotation axis: elongation axis, [001]).
- $a = 12.34 + 0.01, b = 12.85 \pm 0.03, c = 6.29 \pm 0.01 \text{ Å},$

$$U=997.4$$
 Å³, $D_m=2.067$ g.cm⁻³, $D_x=1.979$ g.cm⁻³.

 $Z = 4, \mu = 42.74 \text{ cm}^{-1}$ (Cu K α).

- Reflexions: hkl: no conditions; 0kl:k+l=2n; h0l: no conditions; hk0: h=2n.
- Possible space groups: Pnma [no. 62, $D_{2h}(16)$] or $Pbn2_1$ [no. 33, $C_{2v}(9)$] from systematic absences. Pnma was assumed and confirmed by the structure determination.

For the structure determination, integrated reflexions hk0, hk1, hk2, hk3, hk4, hk5 were recorded on a Weissenberg camera, with the use of the multiple film technique, and measured by a microdensitometer. Corrections for absorption as for cylindrical specimens ($\mu R = 0.81$) and for Lorentz and polarization factors were applied.

The structure factors were calculated with atomic form factors obtained by the Forsyth & Wells (1959) formula with the improved constants given by Moore (1963).

Determination of the structure

The structure was solved by the Patterson function P(UVW) and by a few Fourier functions $\varrho_0(xyz)$. Refinement was done by differential syntheses; the anisotropic thermal parameters were derived, following Nardelli & Fava (1960) and Nardelli, Fava & Giraldi (1963), by a program written by Nardelli, Musatti, Domiano & Andreetti (1965) (final disagreement index: $R=8\cdot2\%$, observed reflexions only). Final atomic coordinates and observed and calculated electron densities at the atomic peaks are quoted in Table 1 and the anisotropic thermal parameters in Table 2. Observed and calculated structure factors are compared in Table 3.

Discussion of the structure

The whole structure is drawn in Fig.1. The main interatomic distances and angles are quoted in Table 4.

The structure was clearly composed of $[Zn(OH_2)_6]^{2+}$ octahedra and NO₃⁻ triangular groups. The hexaquozinc cation (Fig. 2) has nearly octahedral symmetry as

				$a_{\nu}(x\nu_{7})$	$\overline{o}(xyz)$
	Y	ν	Z	$(e.Å^{-3})$	(e.Å ⁻³)
Zn	0.6242(1)	· 0·2500 (0)	0.4472 (2)	70.7	71.7
$H_{2}O(1)$	0.4923(4)	0.2500(0)	0.2353(11)	12.3	12.2
$H_{2}O(2)$	0.7316(3)	0.2500(0)	0.1823 (10)	12.3	12.1
$H_2O(3)$	0.5205(3)	0.2500 (0)	0.7179 (10)	11.9	11.8
$H_2O(4)$	0.7587(3)	0.2500 (0)	0.6473 (9)	12.6	12.3
$H_{2}O(5)$	0.6257(5)	0.0894 (3)	0.4457 (12)	11.5	11.6
0(6)	0.6440(7)	0.0818 (4)	-0.0585(18)	9.5	9.5
O(7)	0.6196(5)	-0.0605(3)	0.1155 (11)	11.0	10.9
$\tilde{O}(8)$	0.6144(5)	- 0·0596 (4)	-0.2313(12)	11.3	11.5
N(9)	0.6270 (4)	-0.0124(3)	-0.0578(12)	11.3	11.5
		, ,			

Table 1. Atomic coordinates (with e.s.d.'s $\times 10^4$) and electron densities at the atomic peaks

Table 2. Anisotropic thermal parameters (Å²)

1.00		mopre me	F	- (-)	
B 11	B ₂₂	B ₃₃	B ₁₂	B ₁₃	B ₂₃
2.839	2.163	2.662		-0.164	
2.603	2.273	3.338		-0.531	
2.810	2.395	2.748		-0.331	
3.121	2.413	2.527		0.100	
2.717	2.583	2.511		-0.196	_
4.435	2.005	3.331	-0.092	0.241	-0.028
5.503	2.654	4.575	-0.110	-0.532	-0.217
4.785	3.052	3.060	0.217	0.055	0.157
4.197	2.606	2.630	-0.473	0.137	-0.161
2.876	2.091	2.452	0.073	-0.223	0.011
	B ₁₁ 2-839 2-603 2-810 3-121 2-717 4-435 5-503 4-785 4-197 2-876	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Average and maximum thermal parameter shift in the last cycle: $Zn: |\Delta B_{av}| = 0.034, |\Delta B_{max}| = 0.040.$

Ligth atoms: $|\Delta B_{av}| = 0.054$, $|\Delta B_{max}| = 0.338$.

Table 3. Observed and calculated structure factors

Reflexions marked with an asterisk are probably affected by secondary extinction and were excluded from the refinement.

Þ	¥	ī	10 <u>7</u> 0	10 <u>7</u>	Ē	F	1	10 <u>P</u> o	10 <u>7</u> 0	<u></u>	¥	l	10 <u>7</u> 0	10 <u>F</u> _	Þ	ř	1	10 <u>F</u> o	10 <u>7</u> 0	<u> </u>	Ē	1	10 <u>7</u> 0	10 <u>F</u> o	<u>h</u>	¥	1	10 <u>F</u> o	10 <u>P</u> _0	Þ	k	ī	10 <u>P</u> _	10 <u>P</u>
2 4 6 10 12 14	0000000	0000000	1762 1554 484	28- 2157- 1710 15 460- 26-	10 2 4 6 8	12 13 13 13 13	00000	21 568 387	41- 550- 26- 364 34	012345678	5555555	1 1 1 1 1	474 862 53 849 360 526 586	450- 836- 39- 793- 324 502 42 579	4 5 6 7 8 9 10	12 12 12 12 12 12 12	1 1 1 1 1 1	220 107 155 124 131	34 242- 94 152 110 147 52-	01234567	444444	~~~~~~	108 74 167 569 868 467 112 154	25 23 141- 555- 873- 462 129- 138	4 5 6 7 8 9 10 11	11 11 11 11 11 11 11	~~~~~~~~~	260 399 190 118 179 75	2 252- 397- 178 5- 113 186 106-	8 9 10 11 12 13 14	333333	333333	377 103 136 241 102 50	375 92 7 123 231- 95- 40-
2 4 6 10 12 14	1 1 1 1 1 1	000000000	1179 143 680 136 498 205	1261- 127 679 104- 482- 36 179	02468	14 14 14 14	00000	327 156 105	287- 12- 19- 17 180-	9 10 11 12 13 14 15	5555555	1 1 1 1 1 1	253 343 112 284 135	233- 343- 109- 297- 89 133 22- 143	0 1 2 3 4 5 6 7	13 13 13 13 13 13 13 13	1 1 1 1 1 1 1 1	148 270 242 117 199 200	119- 259- 7 236- 91 198 26- 188	9 10 11 12 13 14	4 4 4 4 4	2 2 2 2 2 2 2 2	179 172 236 135	199 58- 8- 178- 254- 131 24-	0 1 2 3 4 5 6	12 12 12 12 12 12 12	2 2 2 2 2 2 2	327 215 313 529 329	332 186- 57- 302- 529- 308 21-	1 2 3 4 5 6 7 8	4 4 4 4 4 4 4	3 3 3 3 3 3 3 3 3	144 398 259 78 84 193 115	161 407- 255- 59- 206 28 81-
0 2 4 6 8 10 12	~~~~~~	0000000	445 40 1414 332	334- 9- 1213- 19 364- 2	6 024	15 15 16 16	0000	73 342	352 17 113-	1 2 3 4 5 6 7	666666	1 1 1 1 1 1	578 275 429 134 553 237	588- 257 438 145- 573 229-	89	13 13 14 14 14	1 1 1 1 1	118 273 145 256	88- 158- 258- 122 232	1 2 3 4 5 6 7	5555555	~ ~ ~ ~ ~ ~ ~ ~ ~ ~	473 911 630 469 664 294	463- 913- 582 28- 466 696 289-	7 8 9 10	12 12 12 12	2 2 2 2 2 2 2	112 195 99 	105 194 101- 22- 83-	9 10 11 12 13 14	44444	3 3 3 3 3 3	167 204 105 58	175 211- 107- 51- 1- 41
14 2 4 6 8	2 3 3 3 3 3	0000	1008 374 652 232	1073 343 666- 259-	1 2 3 4 5 6	000000	1 1 1 1 1	82 85 307 358 131	84 23 54 264 361- 117	8 9 10 11 12 13 14		1 1 1 1 1 1	188 289 139 191 105 213	181- 317- 133 187 107- 215 73-	*5678 0	14 14 14 14	1 1 1 1	219 109 171 109	213 99- 190- 52- 80	9 10 11 12 13 14	> 5 5 5 5 5 5	222222	162 248 147 103 113	35 176- 267- 151 40- 105 149	23456789	13 13 13 13 13 13 13 13	~~~~~~~	188 141 123 189 52	176- 126 19 107 170 70- 24- 40-	0 1 2 3 4 5 6	5555555	33333	50 87 48 95 291 156 65	74- 108- 45- 281 157 49-
10 12 14 0 2 4	333444	000	519 120 232 • 976 58 53	508 126 201- 1851 57 106-	7 9 10 11 12 13 14	000000000	1 1 1 1 1 1 1	206 269 181 125 73 117 175	216 235 219 91- 143 187- 58	012345	777777777777777777777777777777777777777	1 1 1 1 1 1	179 398 357 141 250	181 401 13- 371 132- 258-	1 2 3 4 5 6	15 15 15 15 15	1 1 1 1 1	157 123 102	138 0 110 51- 101- 4	0123456	6666666	~ ~ ~ ~ ~ ~ ~ ~ ~	288 173 156 480 864 520	274- 140 177 475 846 499-	0 1 2 3 4	14 14 14 14 14	~ ~ ~ ~ ~ ~	166	67- 28 24 153 244	7 9 10 11 12 13	5555555	3333333	130 154 103 195 81	125 147- 46- 43 72- 177 89
6 8 10 12 14	4 4 4 4	00000	100 826 49 236	95- 817 46 219- 21-	15 0 1 2 3	0	1 1 1 1 1	90 407 818 841	88 464- 910- 26- 840-	6 7 8 9 10 11 12	7777777	1 1 1 1 1 1 1	305 157 211 168	43 310- 136 217 36 172 59-	1 2 3 0 1	16 16 16 0	1 1 2 2	51 604 241	64 22- 56- 669 385-	7 8 9 10 11 12 13		2 2 2 2 2 2 2 2 2	178 104 194 116	67- 186- 85 76 192 106-	7 6 7 1 2 3	14 14 14 15 15	222 222	63 142 85	50 58- 66 148 85-	1 2 3 4 5 6	666666	3333	402 921 436 168 318 598	378- 888 396 158 292 581-
4 6 8 10 12 14	555555	000000	166 243 155 285 127	167 241 151- 276- 66 109	5 6 7 8 9 10 11	1 1 1 1 1 1	1 1 1 1 1 1	555 244 351 119 301	522 5 612 249 374- 101- 305-	13 14 1 2 3 4	7 8 8 8 8	1 1 1 1 1	523 262 441 125	507 242- 424- 104	2345678.9	00000000	~~~~~~	290 803 1304 799 67 152 380 215	328- 881- 1508- 893 73 164 391 206-	14 1 2 3 4 5	6 7 7 7 7 7 7 7	2 2 2 2 2 2	320 606 441 364	2- 317 625 425- 45- 339-	4 5 0 1 2	15 15 16 16	22222	81	31 103- 16- 12 27-	7 8 9 10 11 12 13	6666666	333333	136 282 418 138 69 67	133- 25- 279- 422 151 87 64
0 2 4 6 8 10 12	6 6 6 6 6 6	000000	1344 877 941 224	2422- 26 805 23- 925- 3- 222	12 13 14 15 1 2	1 1 1 2 2	1 1 1 1	142 115 1097 591	96 138 39- 145 1241- 598	567 8910 111	8 8 8 8 8 8 8 8 8 8 8 8	1 1 1 1 1 1 1	385 176 306 130 180 83	408- 176 323 159 188 77- 110- 70	10 11 12 13 14 15	000000	2 2 2 2 2 2	107 160 326 199 71	140- 177- 328- 187 25 59	6 7 8 9 10 11 12	7777777777777777777	~~~~~~	544 242 93 149 234 147 85	532- 235 44 136 236 138- 11- 89-	1 2 3 4 5 6 7	0000000	33333	329 822 420 268 303 543	445 1018- 465- 294- 339- 605	0 1 2 3 4 5 6	777777777777777777777777777777777777777	33333	540 276 84 277 608 234	518 255 82 243 571- 221-
14 2 4 6 8 10	6 7 7 7 7 7 7	0 0 0 0 0	1405 892 529	19 1451 19 869- 17- 520	3 4 5 6 7 8 9	~ ~ ~ ~ ~ ~ ~ ~ ~ ~	1 1 1 1 1 1 1	979 337 862 377 685 239 356 174	1037 239- 879 384- 707- 248- 374- 165	13 0 1 2 3	8 99999	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	129 259 464 329	135- 228- 441- 18 326- 158	1 2 3 4 5 6 7 8	1 1 1 1 1 1 1 1	~~~~~~	486 965 699 512 740 336	544- 1084- 720 10 554 826 344-	01234	8 8 8 8	~~~~~	277 163 486 724	319 158 49- 483 755-	8 9 10 11 12 13 14	00000000		92 322 427 140 141 84 126	98 329 429- 146- 148- 59- 125	7 8 9 10 11 12 13	7777777777777		199 278 122 183 51	206- 279 67 40 106 197- 78-
12 14 0 2 4	7 7 8 8	0000	178 573 271	19 201- 657 6- 172	11 12 13 14 15	~~~~~	1 1 1 1	253 150 253 97 138	261 118- 237 77- 144-	5 6 7 8 9 10		1 1 1 1 1 1	352 224 124 234 122	334 46- 215 120- 241- 23- 113-	9 10 11 12 13 14 15	, 1 1 1 1 1 1	~~~~~~~~~	183 289 183 131 190 64	197- 313- 179 22- 119 178 69-	5 6 7 8 9 10 11 12	0 8 8 8 8 8 8 8 8 8 8	~ ~ ~ ~ ~ ~ ~ ~ ~ ~	403 138 200 228 104 171 225	389 144- 187 245 85- 38 171- 227-	0 1 2 3 4 5	1 1 1 1	33333	244 173 71 210 499 226	347- 228- 93- 213- 549 247	123456	8 8 8 8 8 8 8 8	****	52 103 138	50 100- 133- 17 7- 34
8 10 12 2 4	8 8 8 9 9	00000000	436 142 188 136	21 414 27- 112- 207- 103-	01234567		1 1 1 1 1 1 1	156 335 93 99 118 301 156 111	181 408 85- 167 102- 325- 158 137-	12 13 1 2 3 4	9 9 10 10 10	1 1 1 1 1	73 282 103 248 124	41 93 269- 116 249 124-	012345	~~~~~	2 2 2 2 2 2	340 259 163 570 805 413	203 188- 105 554 843 407-	13 1 2 3 4 5	8 9 9 9 9 9 9 9	~ ~ ~ ~ ~ ~ ~	86 98 79	113 36 40- 32 54-	6 7 8 9 10 11 12	1 1 1 1 1 1 1	*****	247 275 83 135 241	4- 207 263- 69- 6 109- 231	7 8 9 10 11 12	8 8 8 8 8 8	333333	115 105 107 77	13 117- 87 106- 79- 1-
6 8 10 12 0 2	9 9 9 9	0000	143 98 211 68 763	152 93 198- 53- 805-	8 9 10 11 12 13 14	3333333	1 1 1 1 1	120 245 99 81 117	120 279 3 39- 91- 76	5 6 7 8 9 10 11	10 10 10 10 10 10	1 1 1 1 1 1 1	238 122 243 77 120 112	228 106- 239- 64- 111- 62 109	6 7 8 9 10 11 12	N N N N N N N N	2 2 2 2 2 2 2 2	212 122 100 162 200	248 113- 113- 15- 57- 173 206	6 7 8 9 10 11 12	, , , , , , , , , , , , , , , , , , ,	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		135 3- 52 51- 55- 31 38-	14 1 2 3 4	1 2 2 2 2 2	33333	187 489 330 50	195- 506 336 32-	0 1 2 3 4 5 6	9999999	333333	451 215 208 495 204	439- 201- 13- 174- 465 187 46-
4 6 8 10 12	10 10 10 10	00000	150 97 437 75 82	131 96 409- 74- 95	1 2 3 4 5	4 4 4 4	1 1 1 1 1	326 155 251 290 334	320 132- 267- 247 308-	0 1 2 3 4	11 11 11 11	1 1 1 1 1	147 235 255	140 257 9 261 102-	14 15 1 2 3	222	~~~~	286 280 78	93- 60 55- 234- 165- 36	0 1 2 3 4 5	10 10 10 10 10	~ ~ ~ ~ ~ ~ ~ ~	196 136 71 149 236 138	157 112- 71 135 234 121-	56 78 910 11	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	33333333	101 296 79 182 206 302 146	100 290- 84- 189 192- 298 157 5-	7 8 9 10 11 12	999999	3 3 3 3 3 3	162 225 82 88	143 224- 66- 30 75- 162
4 6 8 10	11 11 11 11	00000	469 63 281 44 237	417 60- 271- 67 221	6 7 8 9 10 11 12	4 4 4 4 4 4	1 1 1 1 1	149 303 177 134 51 96 138	135 303 179 129 66- 94- 130	5 7 8 9 10	11 11 11 11 11 11 11	1 1 1 1 1 1	153 225 120 124 108	158- 11- 223- 94 125 52 131	4 5 6 7 8 9 10	33333	~~~~~~	74 149 151 85	47 142- 175- 16- 32- 70 99	6 7 8 9 10 11 12	10 10 10 10 10 10	~ ~ ~ ~ ~ ~ ~ ~ ~	49	40 4 7 33- 23 60 89	13 14 0 1 2	2 2 3 3 3 3	333333	103 847 399 56	8 95- 923 399 68	1 2 3 4 5 6 7	10 10 10 10 10 10	33333	194 512 227 52 156 343 94	200- 510 223 50 150 325- 76-
0 2 4 6 8	12 12 12 12 12	00000	768 361 47 493	874 27- 347- 58 451	13 14 15	4 4 4	1 1 1	144 54	130- 39 68	1 2 3	12 12 12	1 1 1	237 119 173	233 107- 170-	11 12 13 14 15	3 3 3 3	2 2 2 2 2	83 96 128	62- 24 83- 120- 41	1 2 3	11 11 11	2 2 2	255 493 319	251 482 302-	3 4 5 6 7	33333	3333	383 893 350 289	353 910- 336- 15 264-	8 9 10 11	10 10 10 10	3333	164 225 69	22 160- 241 94

h 0	<u>k</u>	1	10 <u>F</u> 0	10 <u>F</u> 0	<u>h</u> 9	<u>k</u>	1	10 <u>P</u> 0 420	10 <u>P</u>	<u>h</u>	<u>k</u> 4	1	10 <u>P</u> 0	10 <u>F</u> c	<u>h</u>	<u>k</u> 8	1	10 <u>P</u> 0	10 <u>P</u> _	<u>h</u> 3	<u>k</u>	<u>1</u> 4	10 <u>F</u> 0 115	10 <u>P</u> 109	<u>h</u> 3	<u>k</u> 3	15	10 <u>F</u> 0 97	10 <u>P</u> 93	<u>h</u> 6	<u>k</u> 7	1 5	10 <u>F</u> 0	10 <u>P</u> <u>e</u> 8-
23456	11 11 11 11 11	3333	99	39 23 34 92- 57-	10 11 12 13	0000	4 4 4	166 82 130	175- 59- 147	6 7 8 9 10	4 4 4 4 4	4 4 4 4 4 4	311 90 259 92 157	312 85 260- 93	5 6 7 8 9	8 8 8 8 8 8 8 8	44444	103 304 71 229 67	107 294 68 213-	4 5 6 0	13 13 13	4 4 4 4	64	68 36	4 5 6 7 8 9	33333	755555	65 49 181	137- 6 55 41 181	8 9 10	7 7 7 7	7 5 5 5	218	207 9 3
7 8 9 10	11 11 11 11	3333		54- 34 8 12-	1 2 3 4 5	1 1 1 1	4 4 4 4	569 180 426	720- 195- 470 2- 323	12	4	4 4	602	42- 85	11	899	4	122 147 50	159- 123- 52-	1 2 3	14 14 14	4 4 4	130 59 64	147 70- 84	10 11 12	3 3 3	555	52 38	43- 44 52-	1 2 3 4 5	8 8 8 8	5 5 5 5 5 5 5	367 80	6- 338- 58 13-
1 2 3 4	12 12 12 12	3 3 3 3	55 199 122 61	95 196- 115- 48-	6 7 8 9 10	1 1 1 1	4 4 4 4	105 355 312 96	95 375- 12 318- 99-	2 3 4 5 6	55555	44444	161 381 279 89	154- 382 12 276 79	3 4 5 6 7	99999	4 4 4 4		8- 3- 30 19 41-	1 2 3 4 5	00000	5 5 5 5 5 5 5	113	56 126- 10 10- 10-	1 2 3 4 5	4 4 4 4	5 5 5 5 5 5	207 51	17 220- 54 10 11-	6 7 8 9	8 8 8 8	5 5 5 5 5	318	308 0 25 22-
5 6 7 8 9	12 12 12 12 12	3 3 3 3 3	70 148 57 79	73- 134 28 9- 102	11 12 13	1 1 1 2	4 4 4	180 95	188 6 101 162-	7 8 9 10 11 12	555555	444444	294 45 264 92 144	301- 6- 273- 86- 148 17	8 9 10	9 9 9	4 4 4	125	10 125- 40-	6 7 8 9 10	000000	555555	234 49 73	237 54 13 37- 66- 6	6 7 8 9 10	4 4 4 4 4 4	555555	72	256 19 2- 20- 60- 15	0 1 2 3 4	99999	5 5 5 5 5 5 5	326 80 216	319- 63 18 36- 219
0 1 2 3	13 13 13 13	3 3 3	425 192 65 190	395- 174- 34- 167-	1 2 3 4 5	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	4 4 4 4	363 267 144 86 80	394 266- 145 43 6-	0	6 6 6	4 4 4	197 541 205	188- 526 203-	1 2 3 4 5	10 10 10 10	4 4 4 4	145	141 130- 17 28 13	12 0 1	0 1 1	5	446 84	7- 618- 98	0 1 2	555	555	613	621- 99 17-	5 6 7 8 9	99999	5 5 5 5 5 5 5	42 35 178	26- 16- 35- 198- 16
4 5 6 7 8	13 13 13 13	3 3 3 3	163 122	148 30 142 233-	8 9 10 11	~ ~ ~ ~ ~ ~ ~	4 4 4 4 4 4	285 86 180 82 148	276- 77- 175 74- 140	3 4 5 6 7 8	66666	4 4 4 4 4	123 207 102 227 105	86 218- 119- 226- 91-	7 8 9 10	10 10 10 10	4 4 4 4	97 49 75	92 - 40 - 89 64 -	2 3 4 5 6 7	1 1 1 1	755555	418 62 83	49- 429 17- 52 90-	3 4 5 6 7 8	755555	55555	463 56 67 80 378	449 31- 67 83- 372-	1 2 3 4	10 10 10 10	5 5 5 5	157	1 162 40- 22-
1 2 3 4	14 14 14 14	3 3 3 3	96 205 106	80- 190 105 1	12 13	2 2 3	4 4 4	28	38 24- 205	9 10 11 12	6 6 6	4 4 4	258 92 99 30	253 71- 95 42	1 2 3 4	11 11 11 11	4 4 4	357 99 260	347 87 253- 0	8 9 10 11 12	1 1 1 1	5 5 5 5 5 5 5	374 128	373- 11 35- 18- 148	9 10 11	555	5 5 5	39	21 50- 14-	5 6 7 8	10 10 10 10	5 5 5 5	168	0 187- 1- 22
6	14 14 15	3	=	40	2 3 4 5 6	333	4 4 4 4 4	57 57 35 39 39	93 12 29 40- 27-	1 2 3 4	7 7 7 7	4 4 4	532 165 382 38	496 145 350- 21	5 6 7 8 9	11 11 11 11 11	4 4 4 4	190 38 198	188- 49- 210 4- 182	1 2 3	2 2 2	5	56 633 143	41 647 126-	1 2 3 4 5	666	5555	391 67	348 51- 14 16-	0 1 2 3	11 11 11 11	5 5 5 5	242	243 37- 8 26
1 2 3	15 15 15	3 3 3	Ξ	36 2- 23	7 8 9 10 11	3333	4 4 4 4 4	136 49 195 117 105	104 44- 204 61 90-	5 6 7 8 9	7 7 7 7 7	4 4 4 4	258 95 308 38 248	237- 75- 299 30- 239	0 1 2	12 12 12	4 4 4	122 374 104	101 347- 87	4 5 6 7 8	2 2 2 2 2 2	5555	567	27- 564- 30 18-	6 7 8 9 10	6666	> 5 5 5 5 5 5 5	376	365- 7- 15- 41 159	4 5 6	11 11	5 5	32	2 33-
0 1 2 3 4	00000	4 4 4 4	225 549 265 367 129	295 932- 300 469- 142-	12 13 0	333	4 4	55 184	17 67- 184	10 11 12	7 7 7	4 4 4	82 148	73 167- 10	3 4 5 6 7	12 12 12 12 12	4 4 4 4	221 69 188 145	210- 52- 189 70 186	9 10 11 12	2 2 2 2 2	5 5 5 5	242 62	39 221 48- 17	11 0 1	6 7 7	5 5 5	14 327 63	29- 298 43-	1 2 3 4 5	12 12 12 12 12	5 5 5 5 5 5	167	5 172- 21 21- 4
5 6 7 8	0000	4 4 4	412 106 366 150	461 139 394 131	1 2 3 4	4 4 4	4 4 4	485 252 228 92	497- 250 237- 68-	0 1 2 3	8 8 8	4 4 4	143 445 141 290	130 427- 155 267-	1 2	13 13	4 4	181 71	169- 64-	0 1 2	3 3 3	5 5 5	255 75 55	267 67- 50-	2 3 4 5	7 7 7 7	5 5 5 5	213	10- 50 195- 10-	0 1 2	13 13 13	5 5 5	159	202- 31 7

Table 3 (cont.)

Table 4. Main interatomic distances and angles, with e.s.d.'s

.

Hexaquozinc cation

		Hexaquozine cation	
$Zn-OH_2(1)$	2·104 ± 0·009 Å	$H_2O(5)-Zn-H_2O(1)$	$90.2 \pm 0.4^{\circ}$
$Zn-OH_2(2)$	2.129 ± 0.009	$H_2O(5)-Zn-H_2O(2)$	89.5 ± 0.4
$Zn-OH_2(3)$	2.130 ± 0.010	$H_2O(5)-Zn-H_2O(3)$	90.5 ± 0.4
$Zn-OH_2(4)$	2.083 ± 0.010	$H_2O(5)-Zn-H_2O(4)$	89·7 <u>+</u> 0·4
$Zn-OH_2(5)$	2.064 ± 0.010	$H_2O(1)-Zn-H_2O(2)$	89.2 ± 0.3
		$H_2O(1)-Zn-H_2O(3)$	92.4 ± 0.4
		$H_2O(4)-Zn-H_2O(2)$	88·7 <u>+</u> 0·4
		$H_2O(4) - Zn - H_2O(3)$	89·7 <u>+</u> 0·4
		Nitrato anion	
N(9)-O(6)	1·228 ± 0·007 Å	O(6)-N(9)-O(8)	119·5±0·9°
N(9)–O(7)	1.256 ± 0.010	O(6) - N(9) - O(7)	120.0 ± 0.8
N(9)-O(8)	1.258 ± 0.010	O(7) - N(9) - O(8)	120.4 ± 0.5
		Hydrogen bonds	
$H_2O(1)-O(8)_{II}$	2·778 ± 0·016 Å	$O(8)_{II'}-H_2O(1)-O(8)_{II}$	$123.4 \pm 0.3^{\circ}$
$H_2O(1) - O(8)_{11'}$	2.778 ± 0.016	$Zn - H_2O(1) - O(8)_{II}$	111.9 ± 0.4
$H_2O(2) - O(6)$	2.852 ± 0.015	$O(6') - H_2O(2) - O(6)$	98·6±0·4
$H_2O(2) - O(6')$	2.852 ± 0.015	$Zn - H_2O(2) - O(6)$	100·4 <u>+</u> 0·4
$H_2O(3) - O(6)_I$	2·995 ± 0·016	$O(6)_{I} - H_2O(3) - O(6)_{I'}$	92·4 ± 0·4
$H_2O(3) - O(6)_{I'}$	2.995 ± 0.016	$Zn - H_2O(3) - O(6)_I$	94·0 <u>+</u> 0·4
$H_2O(4) - O(7)_{111}$	2·868 ± 0·016	$O(7)_{III} - H_2O(4) - O(7)_{III'}$	116.2 ± 0.4
$H_2O(4) - O(7)_{III'}$	2·868 ± 0·016	$Zn - H_2O(4) - O(7)_{III}$	112.0 ± 0.4
$H_2O(5)-O(7)$	2.834 ± 0.010	$O(7) - H_2O(5) - O(8)_I$	93.8 ± 0.2
$H_2O(5) - O(8)_I$	2.795 ± 0.012	$Zn - H_2O(5) - O(7)$	133·1±0·4
		$Zn - H_2O(5) - O(8)_1$	132.9 ± 0.4
		Asymmetric units	
No label	x y z	$x \frac{1}{2} - y z$	
I .	x y 1+z	I' $x \frac{1}{2} - y \frac{1}{2} + z$	
II 1	$x \frac{1}{2} + y \bar{z}$	II' $1-x$ \bar{y} \bar{z}	
III $\frac{3}{2}-3$	$x \frac{1}{2} + y \frac{1}{2} + z$	$III' \qquad \frac{3}{2} - x \qquad \vec{y} \frac{1}{2} + z$	

shown by the distances $Zn-OH_2(1) = 2 \cdot 104$, $Zn-OH_2(2) = 2 \cdot 129$, $Zn-OH_2(3) = 2 \cdot 130$, $Zn-OH_2(4) = 2 \cdot 083$, $Zn-OH_2(5) = 2 \cdot 064$ Å and by the observed angles.

The distances between zinc and water can be compared with distances found in other compounds of the hexaquozinc cation: 2.08 (Broomhead & Nicol, 1948), 2.12 (Yü & Beevers, 1935), 2.08, 2.05, 2.14 (Hargreaves, 1957), 2.129, 2.117, 2.075 Å (Montgomery & Lingafelter, 1964) with a weighted mean value $Zn-OH_2 =$ $2 \cdot 105 \pm 0.025$ Å against our weighted mean value Zn- $OH_2 = 2.097 \pm 0.010$ Å; the total mean value is Zn- $OH_2 = 2.099 \pm 0.020$ Å. For the distances between zinc and water, in octahedral complexes not formed exclusively by water molecules, the following values have been found: Zn-OH₂=2·14 (Niekerk, Schoening & Talbot, 1953), 2.09, 2.16, 2.21 (Doyne & Pepinsky, 1957), 2.21, 2.24 Å (Gladkova & Kondrasev, 1963) with a mean value $Zn-OH_2 = 2.18 \pm 0.05$ Å. For bonds between zinc and oxygen atoms, not belonging to water molecules, the following bond distances in octahedral complexes have been found: Zn-O=2.17, 2.18 (Niekerk, Schoening & Talbot, 1953), 2.16,2.17 (Novacki & Silverman, 1961), 2.19, 2.08 (Doyne & Pepinsky, 1957), 2·147 (Ferrari, Braibanti, Bigliardi & Lanfredi, 1965a), 2.19, 2.20, 2.10 (Iitaka, Oswald & Locchi, 1962), 2.10, 2.12, 2.10, 2.16 (Ghose, 1964); however some lower values, 2.039 (Nardelli, Fava & Giraldi, 1963), 2.04, 1.96, 1.93 Å (Iitaka, Oswald & Locchi, 1962), 2.04 (Ghose, 1964), 2.05 (Ferrari, Braibanti, Bigliardi & Lanfredi, 1965b) have been found and these are of the same length as bonds in tetrahedral complexes: Zn-O=2.02 (Novacki & Silverman, 1961), 2.00, 1.94, 2.06, 2.06 (Iitaka, Oswald & Locchi, 1962), 1.99, 1.98 (Ghose, 1964).

The identification of the atoms of the nitrato group, whose shape is well known, is out of the question, although the observed and calculated electron densities at the peaks corresponding to N(9), O(7) and O(8)are equal and that corresponding to O(6) is lower. This fact can be due to the thermal motion of the whole group, librating around the nitrogen atom. A survey of the thermal parameters confirms this point of view; but we cannot consider the refinement of the thermal parameters so reliable that we can use them with confidence to calculate librational motions.

The distances in the nitrato group (Fig. 3) are not significantly different: N-O(6) = 1.228, N-O(7) = 1.256 and N-O(8) = 1.258 Å with N-O_{av} = 1.242 ± 0.009 Å in good agreement with values quoted by *International Tables for X-ray Crystallography* (1962): N-O_{av} = 1.24 Å; the three angles O-N-O are practically equal to 120°; the plane passing through the four atoms is represented by -0.98286X+0.18172Y+0.03102Z =-7.63647 where X, Y, Z are coordinates in Å; the deviations from the plane are $\Delta = -0.00834$, +0.00527, +0.00289 and +0.00041 Å for N(9), O(6), O(7) and O(8) respectively. Therefore the nitrato group is planar and the nitrogen atom would be in the perfect sp^2 hybridization state.

Fig. 1. Clinographic projection of the structure of $Zn(OH_2)_6(NO_3)_2$.

O ③ N
Fig. 3. Nitrato group, NO₃⁻.

The question whether the three bonds N-O of the nitrato group must be equal, and which is their proper length, is still an open one. According to Barclay, Sabine & Taylor (1965), the difference between the values N-O=1.21 and N-O=1.26 Å, found in RbUO₂(NO₃)₃, is probably significant. Taylor & Mueller (1965) in the structure of $UO_2(NO_3)_2.6H_2O_3$, examined by neutron diffraction, find N-O=1.207, 1.271 Å for the first NO₃⁻ and N-O = 1.231, 1.260 Å for the second NO_3^- , which are significantly different. Britton & Dunitz (1965) find significantly different values, N-O(1)-1.202, N-O(2) = 1.272 and N-O(3) = 1.309 Å in AgCN.2AgNO₃ and they attribute these differences to the different strength of the bonds O-Ag; they find angles O-N-O=118.1, 119.6 and 122.2°, probably different. On the contrary, Sass, Vidale & Donohue (1957) find three equivalent bonds, N-O=1.218 Å, in NaNO₃ and Hamilton (1957) finds, by neutron diffraction, three equivalent bonds in $Pb(NO_3)_2$, with length N-O = 1.268 Å. Swink & Atoji (1960) find three equal bonds N-O = 1.21 Å in triethylenediaminenickel(II) nitrate. The distances $N-O_{av} =$ 1.22 ± 0.07 Å, found by Šćavničar & Prodić (1965) in Mg(OH₂)₆Th(NO₃)₆.2H₂O, are not significantly different; the NO_3^- group, however, is significantly not planar. Also Komiyama & Lingafelter (1964) find, in the nitrato group, three equal bonds N-O = 1.258 Å but with nitrogen slightly out of the plane formed by the three oxygen atoms.

Distances between nitrogen and oxygen in nitrato ions are practically equal to those in nitric esters,

Fig.4. Hydrogen bonds formed by oxygen atoms of one nitrato group with surrounding water molecules.

nitric acid and nitro compounds, apart from bonds N-O(H) and N-O(R) (Luzzati, 1951; Millen & Morton, 1960; Trotter, 1963; Mak & Trotter, 1964; Jensen & Andersen, 1964; Coppens & Schmidt, 1964; Hanson, 1964; Mugnoli, Mariani & Simonetta, 1965).

The whole structure is held together by a threedimensional network of hydrogen bonds between water molecules and nitrato groups. Each oxygen atom of the nitrato group forms two hydrogen bonds (Fig. 4), with water molecules, in the range 2.778 -2.995 Å. Each water molecule forms two hydrogen bonds with nitrato groups (Fig. 5). Two contact distances $OH_2(3) \cdots O(7) = 3.165$ Å and $OH_2(2) \cdots O(8) =$ 3.145 Å have not been considered as hydrogen bonds. The two hydrogen bonds $H_2O(5) \cdots O(7)$ and $H_2O(5) \cdots$ O(8) and the bond Zn-OH₂(5) are nearly in the same plane as shown by the sum of the interatomic angles, 359.8°. The planes of the remaining couples of hydrogen bonds of each water molecule are bent with respect to the corresponding Zn-OH₂ direction, as shown by the sum of the corresponding angles, O-H₂O-O', O-H₂O-Zn and Zn-H₂O-O' which are less, and sometimes much less, than 360°.

We wish to thank Prof.L.Cavalca for computing facilities on the Olivetti Elea 6001/S of the Centro Calcolo Elettronico dell'Università di Parma, and the

Fig. 5. Hydrogen bonds from water molecules, of one hexaquozinc cation, to oxygen atoms of neighbouring nitrato groups.

Consiglio Nazionale delle Ricerche, Rome, for the financial aid which has made the present research possible.

References

- BARCLAY, G. A., SABINE, T. M. & TAYLOR, J. C. (1965). Acta Cryst. 19, 205.
- BRITTON, D. & DUNITZ, J. D. (1965). Acta Cryst. 19, 815.
- BROOMHEAD, J. N. & NICOL, A. D. I. (1948). Acta Cryst. 1, 88.
- COPPENS, P. & SCHMIDT, G. M. J. (1964). Acta Cryst. 17, 222.
- DOYNE, T. & PEPINSKY, R. (1957). Acta Cryst. 10, 438.
- FERRARI, A. & BRAIBANTI, A. (1958). Annali Chimica, 48, 1232.
- FERRARI, A., BRAIBANTI, A., BIGLIARDI, G. & LANFREDI, A. M. (1965a). Acta Cryst. 19, 548.
- FERRARI, A., BRAIBANTI, A., BIGLIARDI, G. & LANFREDI, A. M. (1965b). Z. Kristallogr. 122, 259.
- FORSYTH, J. B. & WELLS, M. (1959). Acta Cryst. 12, 412.
- GHOSE, S. (1964). Acta Cryst. 17, 1051.
- GLADKOVA, V. F. & KONDRAŠEV, JU. D. (1963). Acta Cryst. 16, A31.
- HAMILTON, W. C. (1957). Acta Cryst. 10, 103.
- HANSON, A.W. (1964). Acta Cryst. 17, 559.
- HANSON, A.W. (1965). Acta Cryst. 19, 19.
- HARGREAVES, A. (1957). Acta Cryst. 10, 191.
- KOMIYAMA, Y. & LINGAFELTER, E. C. (1964). Acta Cryst. 17, 1145.
- IITAKA, Y., OSWALD, H. R. & LOCCHI, S. (1962). Acta Cryst. 15, 559.
- International Tables for X-ray Crystallography (1962). Vol. III. Birmingham: Kynoch Press.

- JAYARAMAN, A. (1957). Proc. Indian Acad. Sci. 45, 263.
- JENSEN, G. B. & ANDERSEN, E. K. (1964). Acta Cryst. 17, 243.
- LUZZATI, V. (1951). Acta Cryst. 4, 120.
- MAK, T. C. W. & TROTTER, J. (1964). Acta Cryst. 17, 367.
- MILLEN, D. J. & MORTON, J. R. (1960). J. Chem. Soc. p. 1523.
- MONTGOMERY, H. & LINGAFELTER, E. C. (1964). Acta Cryst. 17, 1295.
- MOORE, F. H. (1963). Acta Cryst. 16, 1169.
- Mozzi, R. L. & Bekebrede, W. R. (1961). Acta Cryst. 14, 1296.
- MUGNOLI, A., MARIANI, C. & SIMONETTA, M. (1965). Acta Cryst. 19, 367.
- NARDELLI, M. & FAVA, G. (1960). Ric. Sci. 30, 898.
- NARDELLI, M., FAVA, G. & GIRALDI, G. (1963). Acta Cryst. 16, 343.
- NARDELLI, M., MUSATTI, A., DOMIANO, P. & ANDREETTI, G. (1965). *Ric. Sci.* **35**, II, Rend. A8, 469.
- NIEKERK, J. N. VAN, SCHOENING, F. R. L. & TALBOT, J. H. (1953). Acta Cryst. 6, 720.
- NOVACKI, W. & SILVERMAN, J. N. (1961). Z. Kristallogr. 115, 21.
- SASS, R. L., VIDALE, R. & DONOHUE, J. (1957). Acta Cryst. 10, 567.
- ŠĆAVNIČAR, S. & PRODIĆ, B. (1965). Acta Cryst. 18, 698.
- SWINK, L. N. & ATOJI, M. (1960). Acta Cryst. 13, 639.
- TAYLOR, J. C. & MUELLER, M. H. (1965). Acta Cryst. 19, 536.
- TROTTER, J. (1963). Acta Cryst. 16, 698.
- YÜ, S. H. & BEEVERS, C. A. (1935). Z. Kristallogr. 95, 426.
- WEIGEL, D., IMELIK, B. & LAFFITTE, P. (1962). Bull. Soc. chim. Fr. 8, 544.

Acta Cryst. (1967). 22, 246

Die Kristallstruktur des 1,4-Bis-(N-äthyl-1,2-dihydrobenzthiazol-2-yliden)tetrazens

VON RUDOLF ALLMANN

Mineralogisches Institut der Universität Marburg, 355 Marburg, Deutschhausstr. 10, Deutschland

(Eingegangen am 25. April 1966)

The structure of 1,4-bis-(N-ethyl-1,2-dihydrobenzthiazol-2-ylidene)tetrazen, $(C_9H_9N_3S)_2$, was solved by a three-dimensional Patterson synthesis with S as the heavy atom. Space group PI, $a=7.307\pm 2$, $b=9.145\pm 2$, $c=7.252\pm 3$ Å, $\alpha=94.95\pm 4^{\circ}$, $\beta=111.06\pm 4^{\circ}$, $\gamma=84.89\pm 3^{\circ}$; Z=1, $D_m=1.40\pm 1$, $D_x=1.41$ g.cm⁻³. By least-squares methods with 1888 reflexions, anisotropic temperature factors for S, N and C and isotropic temperature factors for H, the structure was refined to an R index of 8.4 %. The tetrazene chain is in the *trans(N)-trans-trans(N)* form with bond lengths: C=N 1.302, N-N 1.400 and N=N 1.257 Å. The plane of the tetrazene chain is inclined 4.8° to the benzthiazole planes.

Einleitung

Balli (1966) stellte durch 'Thermolyse' von 2-Tetrazo-3-äthylbenzthiazolin eine Verbindung

 $\left(\begin{array}{c} & S \\ & & \\ &$

von der er annahm, dass sie dimer (n=2) sei und dass vier der darin enthaltenen Stickstoffatome ein Tetrazen bilden. Um diese Frage zu beantworten und um die Konfiguration der eventuellen Tetrazenkette aufzuklären, wurde die genannte Substanz einer Röntgenstrukturanalyse unterzogen. Diese bestätigte die Annahme eines Tetrazens, und zwar liegt dieses in der trans(N)trans-trans(N)-Form vor.

Experimentelles

Die Kristalle der genannten Substanz wurden von Balli durch Kristallisation aus Dimethylformamid ge-

 $=(C_9H_9N_3S)_n$ her,